The search for leptonic CP violation #### Enrique Fernández Martínez Evidence of physics beyond the SM - Evidence of physics beyond the SM - Many open questions: - Masses? Why so small?? - Absolute mass scale? - Normal or inverted hierarchy? - Evidence of physics beyond the SM - Many open questions: - Masses? Why so small?? - Absolute mass scale? - Normal or inverted hierarchy? - Mixing? - Large compared with CKM - $\theta_{23} = 45^{\circ}$? Related to $\theta_{13} \neq 0^{\circ}$? - CP violation? - Evidence of physics beyond the SM - Many open questions: - Masses? Why so small?? - Absolute mass scale? - Normal or inverted hierarchy? - Mixing? - Large compared with CKM - $\theta_{23} = 45^{\circ}$? Related to $\theta_{13} \neq 0^{\circ}$? - CP violation? - Dirac or Majorana particles? - Evidence of physics beyond the SM - Many open questions: - Masses? Why so small?? - Absolute mass scale? - Normal or inverted hierarchy? - Mixing? - Large compared with CKM - $\theta_{23} = 45^{\circ}$? Related to $\theta_{13} \neq 0^{\circ}$? - CP violation? - Dirac or Majorana particles? Flavour - Evidence of physics beyond the SM - Many open questions: - Masses? Why so small?? - Absolute mass scale? - Normal or inverted hierarchy? - Mixing? - Large compared with CKM - $\theta_{23} = 45^{\circ}$? Related to $\theta_{13} \neq 0^{\circ}$? - CP violation? - Dirac or Majorana particles? Origin of matter Flavour - Evidence of physics beyond the SM - Many open questions: New generation of neutrino experiments to address these questions is now running! #### **Oscillation Parameters** - What we already know (1σ) - Solar sector $\begin{cases} \Delta m_{21}^2 = 7.45^{+0.19}_{-0.16} \cdot 10^{-5} \text{ eV}^2 \\ \sin^2 \theta_{12} = 0.306^{+0.012}_{-0.012} \end{cases}$ - $\sin^2 \theta_{13} = 0.0229^{+0.002}_{-0.0019}$ - What we still don't know - $\delta = ?$ - Mass hierarchy $s_{atm} = sign(\Delta m_{31}^2)$ M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz 1209.3023 www.nu-fit.org See also: D. V. Forero, M. Tortola, J. Valle 1205.4018 G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno 1205.5254 #### Plus non-oscillation searches: Plot updated from M. Blennow, EFM, J. Lopez-Pavon and J. Menendez 1005.3240 #### The Golden channel in matter $$P(\overrightarrow{v_e} \rightarrow \overrightarrow{v_\mu}) = s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{atm}}{\widetilde{B}_{\mp}}\right)^2 \sin\left(\frac{\widetilde{B}_{\mp}L}{2}\right)^2 \quad \text{"atmospheric"}$$ $$+ c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{sol}}{A}\right)^2 \sin^2\left(\frac{AL}{2}\right) \quad \text{"solar"}$$ $$\text{"interference"} + \widetilde{J} \frac{\Delta_{sol}}{A} \frac{\Delta_{atm}}{\widetilde{B}_{\mp}} \sin\left(\frac{AL}{2}\right) \sin\left(\frac{\widetilde{B}_{\mp}L}{2}\right) \cos\left(\pm \delta - \frac{\Delta_{atm}L}{2}\right)$$ #### Expanded in $$\sin 2\theta_{13} \sim 0.3$$ $$\sin 2\theta_{13} \sim 0.3 \qquad \left(\frac{\Delta_{sol} L}{2}\right) \approx 0.05$$ #### where $$\tilde{J} = \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \qquad \Delta_{atm} = \frac{\Delta m_{23}^2}{2E} \qquad \Delta_{sol} = \frac{\Delta m_{12}^2}{2E}$$ $$A = \sqrt{2}G_F n_e$$ $\widetilde{B}_{\mp} = |A \mp \Delta_{atm}|$ A. Cervera *et al.* hep-ph/0002108 ## Optimization of facilities for large θ_{13} Signal systematics and not stats becomes the bottleneck for large θ_{13} , explore second peak? P. Coloma and EFM 1110.4583 ## Shoplist of present and future facilities | Experiment | Detector (kton) | Baseline (km) Power (MW) | | Mean v E (GeV) | | |-------------|-----------------|--------------------------|---------|----------------|--| | T2K | 22 WC | 275 | 0.2-0.7 | ~1 | | | NOvA | 13 scintillator | 810 | 0.75 | ~2.5 | | | T2HK | 560 WC | 275 | 0.7 | ~1 | | | LBNF (DUNE) | 30 LAr | 1300 | 1.2 | ~3 | | | ESS | 500 WC | 540 | 5 | ~0.4 | | T2K and NOvA currently running T2HK and LBNF will hopefully be aproved soon T2K, T2HK and ESS low E and short baseline → small matter effects, large WC det. Good for CP violation. NOvA and LBNF high E and long baseline → large matter effects, smaller det. Good for mass hierarchy. ## Sensitivities with present experiments #### Sensitivities with present experiments From M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz 1405.5439 www.nu-fit.org #### Sensitivities to CPV Plot adapted by P. Coloma from E. Baussan et al. 1309.7022 To plot these: compute $\Delta \chi^2 = \chi^2 (\delta = 0, \pi) - \chi^2_{min}$ for a given "true" δ To plot these: compute $\Delta \chi^2 = \chi^2 (\delta = 0, \pi) - \chi^2_{min}$ for a given "true" δ If $\Delta \chi^2 > 1$, 4, 9, 25 then CP conservation excluded at 1, 2, 3, 5 σ To plot these: compute $\Delta \chi^2 = \chi^2(\delta = 0, \pi) - \chi^2_{min}$ for a given "true" δ If $\Delta \chi^2 > 1$, 4, 9, 25 then CP conservation excluded at 1, 2, 3, 5 σ Why 1, 4, 9, 25? Wilk's theorem says $\Delta \chi^2$ should be distributed as χ^2 a with 1 dof Wilk's theorem asumes linearity of the observables to have a χ^2 Wilk's theorem asumes linearity of the observables to have a χ^2 But δ is cyclic \rightarrow line becomes a segment or an ellipse... Wilk's theorem asumes linearity of the observables to have a χ^2 But δ is cyclic \rightarrow line becomes a segment or an ellipse... And degeneracies will also violate linearity... No guarantee that the test statistic will follow a χ^2 distribution Wilk's theorem asumes linearity of the observables to have a χ^2 But δ is cyclic \rightarrow line becomes a segment or an ellipse... And degeneracies will also violate linearity... No guarantee that the test statistic will follow a χ^2 distribution M. Blennow, P. Coloma and EFM 1407.3274 M. Blennow, P. Coloma and EFM 1407.3274 For low performance, distribution falls much faster than χ^2 As the performance improves, first it falls slower and then approaches asymprocically a χ^2 M. Blennow, P. Coloma and EFM 1407.3274 For low performance, distribution falls much faster than χ^2 As the performance improves, first it falls slower and then approaches asymprocically a χ^2 M. Blennow, P. Coloma and EFM 1407.3274 Statistical fluctuations around the test point (δ =0) will have a characteristic size 1 = s R. For large s distance to circle is larger than line \rightarrow smaller difference with distance to point \rightarrow smaller test stat. M. Blennow, P. Coloma and EFM 1407.3274 Statistical fluctuations around the test point (δ =0) will have a characteristic size 1 = s R. For small s distance to circle is smaller than line \rightarrow larger difference with distance to point \rightarrow smaller test stat. For s=0 χ^2 is recovered M. Blennow, P. Coloma and EFM 1407.3274 # Present hint? Significance?? # Present hint Significance From J. Elevant and T. Schwetz 1506.07685 #### Present hint Significance 2D contour much closer to χ^2 approximation From J. Elevant and T. Schwetz 1506.07685 #### **Conclusions** - The large value of θ_{13} discovered opens the window to the measurement of the neutrino mass hierarchy and leptonic CP violation. - T2K and NOvA will provide are providing the first \sim 2-3 σ indications over the next years. In order to reach 5 σ discovery, upgraded or new facilities will be needed. - The optimization strategy for CPV changes for large θ_{13} : importance of systematic errors and the second oscillation peak over statistics and backgrounds. - Deviations from χ^2 in present facilities. Necessary to carefully calibrate the χ^2 when assessing present hint from T2K+Daya Bay+Nova. Stay tunned! # **Systematics** | | | $_{ m SB}$ | | | NF | | |---|------|------------|-------|------------|----------|------------| | Systematics | Opt. | Def. | Cons. | Opt. | Def. | Cons. | | Fiducial volume ND | 0.2% | 0.5% | 1% | 0.2% | 0.5% | 1% | | Fiducial volume FD | 1% | 2.5% | 5% | 1% | 2.5% | 5% | | (incl. near-far extrap.) | | | | | | | | Flux error signal ν | 5% | 7.5% | 10% | 0.1% | 0.5% | 1% | | Flux error background ν | 10% | 15% | 20% | c | orrelate | $_{ m ed}$ | | Flux error signal $\bar{\nu}$ | 10% | 15% | 20% | 0.1% | 0.5% | 1% | | Flux error background $\bar{\nu}$ | 20% | 30% | 40% | correlated | | | | Background uncertainty | 5% | 7.5% | 10% | 10% | 15% | 20% | | Cross secs \times eff. QE [†] | 10% | 15% | 20% | 10% | 15% | 20% | | Cross secs \times eff. RES [†] | 10% | 15% | 20% | 10% | 15% | 20% | | Cross secs \times eff. DIS [†] | 5% | 7.5% | 10% | 5% | 7.5% | 10% | | Effec. ratio ν_e/ν_μ QE* | 3.5% | 11% | _ | _ | _ | _ | | Effec. ratio ν_e/ν_μ RES* | 2.7% | 5.4% | _ | _ | _ | _ | | Effec. ratio ν_e/ν_μ DIS* | 2.5% | 5.1% | _ | _ | _ | _ | | Matter density | 1% | 2% | 5% | 1% | 2% | 5% | ## **Systematics** Plot from the Physics Briefing Book: Input for the Strategy Group to the European Strategy for Particle Physics Plot from the Physics Briefing Book: Input for the Strategy Group to the European Strategy for Particle Physics Plot from the Physics Briefing Book: Input for the Strategy Group to the European Strategy for Particle Physics # Present hint? Significance?? For the present hint for δ the effect is very strong and huge correlations with θ_{23} should be explored to assess significance! From M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz 1405.5439 www.nu-fit.org #### **Precision** P. Coloma, A. Donini, EFM and P. Hernandez 1203.5651